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Abstract

The use of triphones to cope with contextual effects in phoneme-level hidden
Markov model (HMM) based speech recognition results in a huge increase in
the number of system parameters which need to be estimated. The solution
to this problem is to reduce the number of independent system parameters
so that those which remain can be estimated more robustly from the training
data. For HMMs with Gaussian state output probability density functions
(pdfs), a simple example of such an approach is the "grand" variance method
in which all state output pdfs share the same covariance matrix. This paper
reports the results of experiments designed to investigate the effect of grand
variance on the performance of the triphone-HMM based ARM continuous
speech recognition system.
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1 Introduction

The work described in this research note was conducted at the UK Speech Research
Unit as part of the Airborne Reconnaissance Mission (ARM) continuous speech
recognition project. The aim of the ARM project is accurate recognition of con-
tinuously spoken airborne reconnaissance reports using a speech recognition system
based on phoneme-level hidden Markov models (HMMs). The ARM project is de-
scribed in [2]. The work described here is based on version 5 of the ARM system.

The more recent versions of the ARM system use triphone HMMs to model
the context-sensitivity of the acoustic patterns corresponding to phonemes. This
approach makes the simplifying assumption that context-related variations in the
acoustic realisation of a partictar phoneme depcnui only on the immediately pre-
ceding and following phonemes. This means that rather than modelling a phoneme
using a single HMM, each phoneme is modelled using a set of HMMs, one for each
pair of phonemes which occur as its immediate neighbours in the ARM baseform
dictionary.

Depending on the speaker, there are approximately 1500 word-internal tri-
phones in the ARM vocabulary, resulting in a speech recognition system with ap-
proximately 234,000 parameters. Assuming that 20 minutes of speech is used to
train the system, the number of training observations is 3,120,000, or approximately
13 observations per parameter. These observations are not statistically indepen-
dent, nor are they uniformly distributed between triphones. In fact approximately
400 of the triphones in the ARM vocabulary are not represented in the training set.
Consequently many of the triphone I-MM parameters will be undertrained.

The solution to this training problem is to reduce the number of independent
system parameters so that those which remain can be estimated more robustly from
the training data. The most obvious way to achieve this is to "tie" together different
system parameters so that they share the same training material. The simplest
example of such an approach is the "grand" variance method [3] in which all HMM
state output probability density functions share the same covariance matrix. This
note reports the results of applying the grand variance method in the context of the
ARM system.

2 The Triphone Based ARM system (ARM-5)

The version of the ARM system which is used in the present experiments is ARM-5
(see [2] for a description of the evolution of the ARM system).

Front-end acoustic analysis in all versions of the ARM system is derived from
the SRUbank filterbank analyser in its default configuration of 27 critical band filters



zpannin 6 the range 0 to 10kHz and producing 100 frames per second. In the present
experiments two alternative front-end representations were used. These are refered
to as CC16 and CC2 6 ([4]), and are derived as follows.

Let ej = (vt',...,v,") be the SRUbank feature vector at time t. The mean
channel amplitude m(t) of et is subtracted from each component of t , and the
resulting vector is then rotated using a discrete cosine transform to obtain a new
feature vector tj,. The 17 dimensional feature vector i for representation CC16 at
time t is defined by:

Xtd = w t , d = 1,..., 16

X17= M(et)

and the 26 dimensional feature vector it for parameterisation CC12 6 is given by:

Yt = w ta, d- 1,..., 12

yt13 =m(t)

yi d = (wf+ d - w9-2d), d = 14, ... , 25

Y21 = (M(VI;2) - M(VJ,))

Detailed results of experiments which have been conducted to assess the per-
formance of a range of related front-end representations derived from linear trans-
formations of SRUbank are presented in [4].

Acoustic-phonetic processing in ARM-5 uses a set of approximately 1500
HMMs (the precise number depends on the speaker) consisting of:

* Four single state "non-speech" HMMs to cope with non- speech sounds in
regions of the test data between spoken sentences.

* Six word-level HMMs for the commonly occuring short words "air", "at", "in",
"of", "oh" and "or". The number of states in each of these word-level HMMs
is equal to three times the number of phonemes in the baseform transcription
of the corresponding word.

" Approximately 1490 three-state triphone HMMs, one for each word- internal
triphone which occurs in the ARM vocabulary. Since the baseform pronuncia-
tions of ARM vocabulary words vary between speakers in the speaker depen-
dent ARM system, the precise number of triphone HMMs will be different for
each speaker.

As with earlier versions of the ARM system, all HMM states in ARM-5 are
identified with single multivariate Gaussian state output probability density func-
tions with diagonal (co)variance matrices.

Words in the ARM vocabulary are related to phonemes through a dictionary

of "baseform" phonemic transcriptons. In the current, speaker-dependent, version
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of the ARM system this dictionary is modified for each speaker. These modifications
are concerned with broad differences, for example between "northern english" and
"southern english", rather than with fine details of the speakers pronunciation. It
is assumed that spoken examples of vocabulary words conform to these baseform
transcriptions.

3 HMM Training and Recognition

3.1 Training and Test Data

Speaker dependent recognition experiments were conducted using speech from a
single speaker (SJ) as training and test material. The training set consisted of
37 ARM reports (224 sentences, 1985 words) chosen to give maximum coverage of
phonemes which occur infrequently in the ARM vocabulary. Ten reports from the
same speaker (540 words, 2293 phonemes according to baseform transcriptions) were
used as test material.

3.2 Monophone HMM Training

Initial estimates of the parameters of context-insensitive monophone phoneme HMMs
were obtained from the equivalent of two ARM reports of speech, hand labelled at
the phoneme level. Similarly, initial estimates of the common word HMM parame-
ters were obtained from single examples of these words extracted from continuous
speech. The initial estimates of parameters of a single state "non-speech" HMM
were derived from a typical non-speech region of the training data. This model
was used as the initial model for all four non-speech HMMs. The models were op-
timised with respect to the complete training sct labelled orthographically at the
sentence level. Standard sub-word HMM training procedures were used in which
sentence level HMMs were constructed from phoneme-level HMMs using the dictio-
nary of baseform transcriptions of ARM vocabulary words. These models were then
mapped onto the sentence level acoustic data using the forward backward algorithm
to obtain contributions to the model parameter estimates.

3.3 Triphone HMM Training

The parameters of the context insensitive monophone HMMs were used as the initial
estimates for the parameters of the set of triphone HMMs. The triphone HMMs were
then optimised with respect to the complete training set labelled orthographically
at the sentence level using the standard sub-word HMM training procedures.
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Figure 1: Grand variance as a function of component of the CC16 front-end repre-
sentation.

3.4 Estimation of Grand Variance

The grand diagonal (co)variance matrix was estimated using a further pass of the
training algorithm applied, as above, to the complete training set labelled ortho-
graphically at the sentence level. During this stage of training all other parameters
were fixed. This training scheme will be refered to as GC-i.

It was found to be beneficial to use two further iterations of the training
algorithm: the first to reestimate the mean vectors of the state output pdfs given
the grand diagonal covariance matrix, and the second to do a final reestimation of
the grand covariance matrix. This scheme will be refered to as GV-2.

Figure 1 shows grand variance as a function of the components of the CC16
parameterisation. As one would expect ([4,) most of the variance is concentrated in
the lower-order components. Notice that the variance increases for the 17th compo-
nent because in the CC16 parameterisation this component is the mean SRUbank
channel amplitude and not a cosine coefficient.
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3.5 Recognition

Recognition was performed using a one-pass dynamic programming algorithm with
bcaia. search and partial traceback [1]. Results are presented in terms of % words
(or phonemes) correct.and % word (or phoneme) accuracy. These are computed as
follows, using dynamic programming to align the true transcription of the test data
with the output of the recogniser:

N-S-D
% words correct N- X 100,N

% word accuracy = N X 100

where N is the number of words in the test set, and S, D and I are the number of
words recognised as the incorrect word, deleted and inserted respectively.

Four different syntaxes were used to constrain the recognition process: a word
syntax, which allows recognition of any sequence of words from the ARM vocabu-
lary; a full syntax (perplexity 6) which was used to generate the ARM reports, a
phoneme based simple syntax which allows any sequence of phonemes to be recog-
nised, and a phoneme based trisimple syntax which forces the recogniser to consider
only sequences of triphone HMMs which are consistent in the sense that the triphone
(a : b-c), corresponding to the phoneme a preceeded by b and followed by c, can only
be preceded and followed by triphones of the form (b : *-a) and (c : a.*) respectively,
where - denotes an arbitrary phoneme or word boundary symbol.

4 Experiments and Results

Tables 1 and 2 show the results of phoneme and word recognition experiments respec-
tively for the CCl6 front-end representation. Tables 3 and 4 show the corresponding
results for the CC12 b front-end. Results for context-insensitive monophone HMMs
are included for comparison.

The results show that the effect of grand variance on phoneme recognition is
quite different to its effect on word recognition. They also suggest that the dimen-
sionality of the acoustic front-end parameterisation is an important factor. Word
recognition and phoneme recognition will be considered separately.

4.1 Word Recognition Results

The discussion of the word recognition results will concentrate on % word accuracy
with no syntax.

I- i l l l I • I i -- is s .m i -



Phoneme Syntax Trisimple Syntax
(perplexity=47)

Training Phonemes Phoneme Phonemes Phoneme
Scheme Correct Accuracy Correct Accuracy

Monophones 64.3% 1 47.1% - -

Triphones 84.3% 58.7% 90.0% 85.2%
GV-2 84.5% 51.9% - -

Table 1: Results of phoneme recognition experiments using the CC16 parameterisa-
tion (540 word test set).

Word Syntax Full Syntax
(perplexity=49 7 ) (perplexity=6)

Training Words Word Words Word
Scheme Correct ,Accuracy Correct Accuracy

Monophones 81.5% 55.7% 98.3% 97.0%
Triphones 86.5% 66.5% 92.4% 86.9%

GI-2 96.3% 86.1% 99.4% 99.3%

Table 2: Results of word recognition experiments using the CC16 parameterisation
(540 word test set).

The results suggest that the effect of moving from a monophone to a triphone
based sytem with state specific covariance matrices depends on the dimensionality
of the acoustic front-end. In the case of the 17 dimensional CC16 representation,
word accuracy with no syntax rises from 55.7% to 66.5%. By contrast, with the 26
dimensional CC12 6 representation, performance falls from 52.2% for monophones
to 37.0% for triphones. Thiz result sugT'ests that the training set cannot support the
increased number of parameters in the CC2 6 based ARM system.

For both front-end representations, the introduction of grand variance leads to
substantial improvements in word recognition accuracy relative to both monophone
HMMs and triphone HMMs with state-specific covariance matrices. The perfor-
mances of the monophone, triphone and GV-2 systems are 55.7%, 66.5% and 86.1%
for the CC16 front-end, and 52.2%, 37.0% and 81.3% for the CCI2 6 front-end.

It can also be seen from the rows of table 4 labelled GV-1 and GV2 that
the adjustment of the state means relative to the first estimate of grand variance,
and the subsequent reestimation of grand variance (see section 3.4) leads to a useful
increase in recognition accuracy.
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Phoneme Syntax Trisimple Syntax
-- _ (perplexity=47)

Training Phonemesy Phoneme Phonemes Phoneme
Scheme Correct Accuracy Correct Accuracy

Monophones 66.2% ! 53.3% -

Triphones 88.9% 71.5% 92.1% 86.6%
GV-1 89.4% ! 53.5% 96.2% 89.7%
GV-2 90.1% 60.4% 96.7% 91.8%

Table 3: Results of phoneme recognition experiments using the CC12 6 parameter-
isation (540 word test set).

Word Syntax Full Syntax
(perplexity=497) (perplexity=6)

Training Words Word Words Word
Scheme Correct Accuracy Correct Accuracy

Monophones 79.8% 52.2% - 99.1% 98.7%/c,

Triphones 73.5% 37.07c 89.3% 83.0%
GV-i- 94.4% 785%- 99.4% 99.1
GV-2 94.87, 81.3% / 99.4% 99.1%

Table 4: Results of word recognition experiments using the CC12 6 parameterisation
(540 word test set).

4.2 Phorerne Recognition Results

The results of the experiments in phoneme recognition are quite different from those
for word recognition. Phoneme recognition accuracy is significantly better for tri-
phone HMMs with state-specific covariance matrices than for context-insensitive
monophone HMMs. For example, in the case of the CC12 b parameterisation
p.,oneme recognition accuracy with the phoneme syntax is 53.3% for monophones
and 71.5% for triphones with state-specific covariance matrices. Furthermore, and in
contrast with the results for word recognition, the use of grand variance consistently
results in a significant drop in phoneme recognition accuracy (without syntax) rel-
ative to triphone HMMs with state-specific covariance matrices. Using the CC1V2
parameterisation again as an example, phoneme accuracy drops from 71.5% to 60.4%
when state specific covariance matrices are replaced with a grand covariance matrix.
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4.3 Discussion

The superior p,rformance at the phoneme level of triphone HMMs without grand
variance ,veti monophone HMMs suggests that the use of several (possibly under-
trained) IMMs to model the.acoustic realisation of a phoneme is better from the
viewpoint of discrimination than a single HMM. The fact that these models can lead
to a fall in word recognition accuracy (as is the case with the CC12 6 parameteri-
sation) suggests that when a phoneme recognition error does occur it is too severe
to be corrected by the word syntax. The hypothesis that the system is making rel-
atively "hard" decisions at the phoneme level is consistent with the use of possibly
undertrained state-specific covariance matrices.

The use of a grand covariance matrix has the effect of "softening" decisions
at the phoneme level. This softening is clearly too extreme for accurate phoneme
recognition and results in poorer phoneme recognition accuracy. However it increases
the relative importance of the word syntax and in this way leads to improved word
recognition accuracy.

5 Conclusions

The experiments described in this research note demonstrate that the use of a grand
covarlance matrix is critical for the high word recognition accuracies which have been
demonstrated by the triphone based ARMsystem. However, the gain in performance
relative to context insensitive monophone HMMs is not a consequence of improved
recognition accuracy at the phoneme level, since phoneme accuracy is actually made
worse by the use of grand variance. Rather, it is a consequence of an improved
balance between the scores which are derived from the acoustic models and the
constraints of the word syntax.
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